网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
如右图所示,梯形ABCD的对角线AC丄BD,其中AD=1/2,BC=3,AC=2,BD=2.1,则梯形ABCD的髙AE的值是()。



参考答案

参考解析
解析:由ACXBD=(AD+BC)XAE=>AE=42/45。
更多 “如右图所示,梯形ABCD的对角线AC丄BD,其中AD=1/2,BC=3,AC=2,BD=2.1,则梯形ABCD的髙AE的值是()。 ” 相关考题
考题 如图,BD=CD,AE∶DE=1∶2,延长BE交AC于F,且AF=5cm,则AC的长为( )。A. 30cmB. 25cmC. 15cmD. 10cm

考题 设有关系模式R(ABCD),其函数依赖集F={A→B,BC→D },__函数依赖不能被F所逻辑蕴涵 A.AC→DB.B→DC.AD→BD.AC→B

考题 血清中的C1作用对象是( )A.C2aC3aB.C3aC5aC.C3bC4bD.C2C4E.C5aC3b

考题 对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。

考题 设抛物线y=1-x2与x轴的交点为A,B,在它们所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图1—2-2所示).设梯形上底CD长为2x,面积为S(x). 图1一2—1 图1—2—2 ①写出S(x)的表达式; ②求S(x)的最大值.

考题 如图.已知圆⊙O是△ABC的外接圆,AD是圆⊙0的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB。 (1)求证:BE是⊙0的切线; (2)若BC=√3,AC=5,求圆的直径AD及切线BE的长。

考题 如右图,在直角梯形ABCD中,AB,∥CD,AD⊥CD,AB=1cm,AD=6cm,CD=9cm,则BC=________cm.

考题 如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.

考题 如图,边长为a的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=________。

考题 如图,平面四边形ABCD中,AB=2,BC=4,CD=5,DA=3, (1)若∠B与∠D互补,求AC2的值; (2)求平面四边形ABCD面积的最大值。

考题 如右图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为(  ). A.20 B.18 C.16 D.15

考题 ?如右图所示,AD//BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为().? A.155° B.50° C.45° D.25°

考题 如图所示,梯形ABCD,AD∥BC,DE⊥BC,现在假设AD、BC的长度都减少10%,DE的长度增加10%,则新梯形的面积与原梯形的面积相比,会怎样变化? A. 不变 B. 减少1% C. 增加10% D. 减少10%

考题 如右图所示,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=14/5 ,BD=2.1.问梯形ABCD的高AE的值是:    A. 43/24 B. 1.72 C. 42/25 D. 1.81

考题 平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是: A.2︰7 B.3︰13 C.4︰19 D.5︰24

考题 如图所示,梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18。问EF的长度为多少? A. 8.5 B. 9 C. 9.5 D. 10

考题 如图所示,梯形ABCD,AD//BC,DE丄BC,现在假设AD、BC的长度 ’都减少10%,DE的长度增加10%,则新梯形的面积与原梯形的面积相比,会( )。 A.不变 B.减少1% B-ECC.增加10% D.减少10%

考题 如图,在梯形ABCD中,AB//CD,O为AC与BD的交点,CO=2AO,则梯形ABCD与三角形AOB的面积之比为: A.6:1 B.7:1 C.8:1 D.9:1

考题 在△ABC中,AB=2,BC=3,B=60°,BD为AC边上的高.求AC,BD.

考题 如图6-15所示,正方形ABCD的对角线∣AC∣=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,则阴影部分的面积为( ) A.π-1 B.π-2 C.π+1 D.π+2 E.π

考题 如,梯形ABCD的上底与下底分别为5,7,E为AC与BD的交点,MN过点E且平行于AD.则MN=

考题 如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。 A. 1 : 3 B. 1 : 4 C. 1 : 5 D. 1 : 6

考题 如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8, AB∥DE,求△DEC的周长。

考题 圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。A、4对B、2对C、1对D、3对

考题 侵犯阴道上2/3,无宫旁浸润()A、ⅠaB、ⅡaC、ⅡbD、ⅢaE、Ⅳa

考题 单选题圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。A 4对B 2对C 1对D 3对

考题 单选题侵犯阴道上2/3,无宫旁浸润()A ⅠaB ⅡaC ⅡbD ⅢaE Ⅳa