网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。

A. 1 : 3 B. 1 : 4
C. 1 : 5 D. 1 : 6


参考答案

参考解析
解析:
更多 “如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。 A. 1 : 3 B. 1 : 4 C. 1 : 5 D. 1 : 6” 相关考题
考题 如图,BD=CD,AE∶DE=1∶2,延长BE交AC于F,且AF=5cm,则AC的长为( )。A. 30cmB. 25cmC. 15cmD. 10cm

考题 已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为(A)1:2 (B)1:4 (C)2:1 (D)4:1

考题 在四边形ABCD中,△ABD,△BCD,△ABC的面积比是3:4:1,点M,N分别在AC,CD上,满足AM:AC=CN:CD,并且B,M,N共线,求证:M与N分别是AC和CD的中点。

考题 如右图,正四面体P-ABC的棱长为口,D、E、F分别为棱PA、PB、PC的中点,G、H、M分别为DE、EF、FD的中点,则三角形GHM的面积与正四面体P-ABC的表面积之比为:A.1:8B.1:16C.1:32D.1:64

考题 在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是( )。A.2.5B.5C.10D.15

考题 一块三角形农田ABC(如下图所示)被DE、EF两条道路分为三块。已知BD=2AD,CE=2AE,CF=2BF,则三角形ADE、三角形CEF和四边形BDEF的面积之比为: A.1∶3∶3 B.1∶3∶4 C.1∶4∶4 D.1∶4∶5

考题 如图,D是△ABC内的一点,BD⊥CD,AD=6,BD=8,CD=6,E,F,G,H分别是AB,AC,CD, BD的中点.则四边形EFGH的周长是()。 A.12 B.14 C.15 D.16

考题 如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2. (1)求证:AB=BC; (2)当BE⊥AD于E时,试证明:BE=AE+CD.

考题 如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.

考题 如图,边长为a的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=________。

考题 数学运算。通过运算,选择最合适的一项。 如图,在△ABC中,已知BD=2DC,EC=2AE,则△BFD与△AEF面积的比值为( ) A.4 B.6 C.8 D.9

考题 ?如右图所示,AD//BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为().? A.155° B.50° C.45° D.25°

考题 如右图所示,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=14/5 ,BD=2.1.问梯形ABCD的高AE的值是:    A. 43/24 B. 1.72 C. 42/25 D. 1.81

考题 平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是: A.2︰7 B.3︰13 C.4︰19 D.5︰24

考题 如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,问AE的长度是多少( ) A.6.9 B.7.1 C.7.2 D.7.4

考题 人行道ABC,BC长286cm,D为BC中点。AD直线距离为324cm,过B点做直线BE,过C点做垂线与BE交于E点,问AE最小距离为多少? A.38cm B.168cm C.176cm D.181cm

考题 如图,在梯形ABCD中,AB//CD,O为AC与BD的交点,CO=2AO,则梯形ABCD与三角形AOB的面积之比为: A.6:1 B.7:1 C.8:1 D.9:1

考题 如图,在△ABC中,已知BD=2DC,EC=2AE,则△BFD与△AEF面积的比值为( ) A.4 B.6 C.8 D.9

考题 在△ABC中,AB=2,BC=3,B=60°,BD为AC边上的高.求AC,BD.

考题 在△ABC中,AB=2,BC=3,B=60°.求AC及△ABC的面积.

考题 如图6-6所示,D,E是△.ABC中BC边的三等分点,F是AC的中点,AD与EF交于O,则OF:OE=( ) A.1/2 B.1/3 C.3/4 D.9/10 E.2/3

考题 如图6-9所示,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为( )A.3 B.7.5 C.15 D.30 E.5.5

考题 如右图所示,梯形ABCD的对角线AC丄BD,其中AD=1/2,BC=3,AC=2,BD=2.1,则梯形ABCD的髙AE的值是()。

考题 如图所示,在长方形ABC.D中,AD=2AB,E为BC.的中点,F为EC.上任意一点(与E点、C.点不重合),从图形6个点中随机选取3个,能构成直角三角形的概率为: A.1/2 B.9/20 C.7/20 D.2/5

考题 (10分)如图,几何体A1B1C1-ABC中,AB=AC,AB⊥AC,棱AA1,BB1,CC1都垂直于面ABC,BC=AA1=2BB1=2CC1=4,D为B1C1的中点,E为A1D的中点。 求证:(1)AE⊥BC;(3分) (2)求异面直线AE与DC所成角的余弦值。(7分)

考题 如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60。,F在AC上,且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF.

考题 圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。A、4对B、2对C、1对D、3对