网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
函数f(x)=10arctanx-3lnx的极大值是()
A

10arctan2-31n2

B

(5/2)π-3

C

10arctan3-3ln3

D

10arctan(1/3)


参考答案

参考解析
解析: 暂无解析
更多 “单选题函数f(x)=10arctanx-3lnx的极大值是()A 10arctan2-31n2B (5/2)π-3C 10arctan3-3ln3D 10arctan(1/3)” 相关考题
考题 ● 某一类应用问题中,需要求正比例函数与反比例函数之和的极值。例如,正比例函数 4x 与反比例函数 9/x 之和用 f(x)表示, 即 f(x)=4x + 9/x, (x0) ,那么函数 f(x) (63) 。(63)A. 没有极小值B. 在 x=1 时达到极大值C. 在 4x=9/x 时达到极小值D. 极大值是极小值的 9/4 倍

考题 设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(52)。A.一个极小值点和两个极大值点B.两个极小值点和一个极大值点C.两个极小值点和两个极大值点D.三个极小值点和一个极大值点

考题 设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取极值不能确定

考题 设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。A.f(0)是f(x)在(-a,a)的极大值,但不是最大值 B.f(0)是f(x)在(-a,a)的最小值 C.f(0)是f(x)在(-a,a)的极大值,也是最大值 D.f(0)是曲线y=f(x)的拐点的纵坐标

考题 设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )

考题 设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0 B.(x-a)[f(x)-f(a)]≤0 C. D.

考题 设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处( )A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取得极值不能确定

考题 函数f(x)= 10arctanx-3lnx的极大值是:

考题 根据f(x)的导函数f'(x)的图像,判定下列结论正确的是() A.在(-∞,-1)内,f(x)是单调增加的 B.在(-∞,0)内,f(x)是单调增加的 C.f(-1)为极大值 D.f(-1)为极小值

考题 设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值 B.极小值 C.不是极值 D.是拐点

考题 设函数y-f(x)连续,除x=a外f''(x)均存在。一一阶导函数y'=f(x)的图形如下,则y=f(x) A.有两个极大值点,一个极小值点,一个拐点 B.有一个极大值点,一个极小值点,两个拐点 C.有一个极大值点,一个极小值点,一个拐点 D.有一个极大值点,两个极小值点,两个拐点

考题 设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )A.x=-1是驻点,但不是极值点 B.x=-1不是驻点 C.x=-1为极小值点 D.x=-1为极大值点

考题 函数y(x)的导函数f(x)的图象如图所示,Xo=-1,则( ) A、X。不是驻点 B、x。是驻点,但不是极值点 C、x。是极小值点 D、 X。极大值点

考题 设f(x)在(-a,a)是连续的偶函数,且当0 A. f(0)是f(x)在(-a,a)的极大值,但不是最大值 B. f(0)是f(x)在(-a,a)的最小值 C. f(0)是f(x)在(-a,a)的极大值,也是最大值 D. f(0)是曲线y=f(x)的拐点的纵坐标

考题 设函数f(x)=(1+x)ex,则函数f(x)( )A.有极小值 B.有极大值 C.既有极小值又有极大值 D.无极值

考题 点(2,-2)是函数f(x,y)=x(4―x)―y(y+4)的()。A、极小值点B、非极值点C、非极值驻点D、极大值点

考题 设函数f(x,y)=x3+y3-3xy,则()。A、f(0,0)为极大值B、f(0,0)为极小值C、f(1,1)为极大值D、f(1,1)为极小值

考题 函数f(x)=10arctanx-3lnx的极大值是()A、10arctan2-31n2B、(5/2)π-3C、10arctan3-3ln3D、10arctan(1/3)

考题 设f(x)在(-a,a)是连续的偶函数,且当0()A、f(0)是f(x)在(-a,A.的极大值,但不是最大值B、B.f(0)是f(x)在(-a,的最小值C、C.f(0)足f(x)在(-a,的极大值,也是最大值D、f(0)是曲线y=f(x)的拐点的纵坐标

考题 多元函数F(X)在X*处存在极大值的充分必要条件是:在X*处的Hessian矩阵()。A、等于零B、大于零C、负定D、正定

考题 单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。A f(0)是f(x)的极大值B f(0)是f(x)的极小值C 点(0,f(0))是曲线y=f(x)的拐点D f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

考题 填空题函数y=x3-3x的极大值点是____,极大值是____。

考题 单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处(  )A 必取得极小值B 必取得极大值C 不可能取得极值D 可能取极大值,也可能去极小值

考题 单选题设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处(  )A 必取极大值B 必取极小值C 不可能取极值D 是否取得极值不能确定

考题 单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。A 不是f(x,y)的连续点B 不是f(x,y)的极值点C 是f(x,y)的极大值点D 是f(x,y)的极小值点

考题 单选题设f(x)在(-a,a)是连续的偶函数,且当0()A f(0)是f(x)在(-a,A.的极大值,但不是最大值B B.f(0)是f(x)在(-a,的最小值C C.f(0)足f(x)在(-a,的极大值,也是最大值D f(0)是曲线y=f(x)的拐点的纵坐标