网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r


参考答案

参考解析
解析:
更多 “设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r” 相关考题
考题 设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

考题 设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是(). A.r(A)=m B.r(A)=N C.A为可逆矩阵 D.r(A)=b且b可由A的列向量组线性表示

考题 若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

考题 设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是: A. A的行向量组线性相关 B. A的列向量组线性相关 C. B的行向量组线性相关 D. r(A)+r(B)≤n

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().A.r(A)=s B.r(A)=m C.r(B)=s D.r(B)=n

考题 设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( ) A.r(A)=r(B)=m B.r(A)=m r(B)=n C.r(A)=n r(B)=m D.r(A)=r(B)=n

考题 设A是mxn的非零矩阵,B是nxl非零矩阵,满足AB=0,以下选项中不一定成立的是: A. A的行向量组线性相关 B. A的列向量组线性相关 C.B的行向量组线性相关 D.r(A)+r(B)≤n

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.

考题 设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设A,B为n阶矩阵,且r(A)+r(B)

考题 设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,

考题 设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

考题 设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

考题 设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

考题 设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S B.若向量组I线性相关,则r>s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r>s

考题 设n阶方阵M的秩r(M)=rA.任意一个行向量均可由其他r个行向量线性表示 B.任意r个行向量均可组成极大线性无关组 C.任意r个行向量均线性无关 D.必有r个行向量线性无关

考题 设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是( ).A.A的列向量组线性无关 B.A的列向量组线性相关 C.A的行向量组线性无关 D.A的行向量组线性相关

考题 单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A A的行向量组线性相关B A的列向量组线性相关C B的行向量组线性相关D r(A)+r(B)≤n

考题 问答题在n维行向量组α(→)1,α(→)2,…,α(→)r(r≥2)中,α(→)r≠0,试证:对任意的k1,k2,kr-1,向量组β(→)1=α(→)1+k1α(→)r,β(→)2=α(→)2+k2α(→)r,…,β(→)r-1=α(→)r-1+kr-1α(→)r线性无关的充要条件是α(→)1,α(→)2,…,α(→)r线性无关。

考题 单选题A是n阶方阵,其秩r<n,则在A的n个行向量中(  ).A 必有r个行向量线性无关B 任意r个行向量线性无关C 任意r个行向量都构成极大线性无关向量组D 任意一个行向量都可由其他任意r个行向量线性表出

考题 单选题设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。A A的列向量组线性无关B A的列向量组线性相关C A的行向量组线性无关D A的行向量组线性相关

考题 问答题设A是n阶矩阵,若存在正整数k,使线性方程组Akx(→)=0(→)有解向量α,且Ak-1α(→)≠0(→),证明:向量组α(→),Aα(→),…,Ak-1α(→)是线性无关的。

考题 单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。A 必定r<sB 向量组中任意个数小于r的部分组线性无关C 向量组中任意r个向量线性无关D 若s>r,则向量组中任意r+l个向量必线性相关

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。