网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。
(1)求Sn;
(2)这个数列的前多少项之和最大 求出最大值。


参考答案

参考解析
解析:(1)设等差数列的公差为d,由题意可得:



(2)Sn=22n-n2=-(n-11)2+121,当n=11时,数列之和最大,最大值为121。
更多 “已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。 (1)求Sn; (2)这个数列的前多少项之和最大 求出最大值。” 相关考题
考题 已知等差数列{an}的首项与公差相等,{an)的前n项的和记作Sn,且S20=840.(I)求数列{an}的首项a1及通项公式;(Ⅱ)数列{an}的前多少项的和等于847.

考题 已知数列{an}的前n项和Sn=n2-2n.求(I){an}的前三项;(II){an}的通项公式.

考题 (19)(本题满分14分)设a1,d为实数,首项为a1,z差为d的等差数{an}的前n项和为Sn,满足S5S6+15=0.(Ⅰ)若S5=5.求S6及a1;

考题 一个等差数列,它的开始四项之和为70,最后四项之和为10,所有项的和为640,则这个数列一共有( )项。A、56  B、60  C、64  D、72

考题 把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8-11。若对某些自然数n满足n-Sn-2007.则n的最大值是()。A.2010B.2016C.2019D.2117

考题 已知数列{an}中,a1=2,an+1=(1+an)/(1-an).记数列{an}的前n项的乘积为∏n,则∏2012=____.

考题 一个等差数列,它的开始四项之和为70,最后四项之和为10,所有项的和为640,则这个数列一共有( )项。A、 56B、 60C、 64D、 72

考题 设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9= 。

考题 在等差数列{an}中,已知a1=2,且a2+a4=20,若an=18,则n=5。()

考题 已知一等差数列a1,21,a3,31,…,an,…,若an=516,则该数列前n项的平均数是( )A.266 B.258 C.255 D.212

考题 已知等差数列前n项和 (Ⅰ)求这个数列的逋项公式; (II)求数列第六项到第十项的和.

考题 等差数列{an)中,已知前15项之和S15=90,则a1+a15==(  )A.8 B.10 C.12 D.14

考题 已知一个等差数列的第五项等于10,前三项的和等于3,那么这个等差数列的公差为( )A.3 B.1 C.-1 D.-3

考题 在等比数列中,a1=3,an=96,Sn=189,则公比q=,项数n=。

考题 已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列; (Ⅱ)设求证:数列{cn}是等差数列; (Ⅲ)求数列{an}的通项公式及前n项和.

考题 等差数列前n项和为210,其中前4项和为40,后4项的和为80,则n的值为( )A.10 B.12 C.14 D.16 E.18

考题 设数列an的前n项和为Sn,则数列an是等差数列。(1)Sn=n2+2n,n=1,2,3……(2)Sn=n2+2n+1,n=1,2,3……A.条件(1)充分,但条件(2)不充分 B.条件(2)充分,但条件(1)不充分 C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分 D.条件(1)充分,条件(2)充分 E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

考题 已知{an)是公差大于零的等差数列,Sn是{an)的前n项和.则Sn≥S10,n=1,2,….(1)a10=0;(2)a11a10小于0A.条件(1)充分,但条件(2)不充分; B.条件(2)充分,但条件(1)不充分; C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分; D.条件(1)充分,条件(2)也充分; E.条件(1)和条件(2)单独都不充分,条件(1)和条件(7)联合起来也不充分.

考题 已知某等差数列共有20项,其奇数项之和为30,偶数项之和为40,则其公差为( ).A.5 B.4 C.3 D.2 E.1

考题 一个等差数列的前12项的和为354,前12项中偶数项之和与奇数项之和的比是32:27,则其项数为( )A.3 B.4 C.5 D.6 E.7

考题 (10分)已知数列{an}满足a1=3,an+1= an +2n, (1)求{ an }的通项公式an; (2)若bn=n an,求数列{bn}的前n项和sn。

考题 (10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数): (1)求数列{ an }的通项公式;(4分) (2)若a1=2,求数列{n an }的前n项和Tn。(6分)

考题 已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。 (1)求证:数列{an}是等比数列; (2)记bn=10+log9an,求{bn}的前n项和Tn的最大值及相应的n值。

考题 单选题在等差数列{an}中,已知前15项之和S15=90,那么a8=(  ).A 3B 4C 6D 12

考题 单选题已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=(  )。A 138B 135C 95D 23

考题 单选题已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于(  ).A 2n-1B 2n+1C 2n-2D 2n+2

考题 单选题已知数列{an}是公差为d的等差数列,Sn是其前n项和,且有S9<S8=S7,则下列说法中不正确的是(  )。A S9<S10B d<0C S7与S8均为Sn的最大值D a8=0