网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设f(x)在积分区间上连续,
A.-1 B.0 C. 1 D. 2


参考答案

参考解析
解析:提示:利用奇偶函数,在对称区间积分为零的性质,计算如下:判定f1(x) = sinx是奇函数,f2(x) = f(x) +f(-x)是偶函数,乘积为奇函数。
更多 “设f(x)在积分区间上连续, A.-1 B.0 C. 1 D. 2” 相关考题
考题 设函数f(x)=x4-4x+5.(I)求f(x)的单调区间,并说明它在各区间的单调性;(Ⅱ)求f(x)在区间[0,2]的最大值与最小值.

考题 设f(x)、g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),由曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为( )。A. B. C. D.

考题 设f(x)是定义在(-∞,+∞)上的连续函数,则( ).A. B. C. D.

考题 设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确?

考题 设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

考题 设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确? D.f(x)在[a,b]上是可积的

考题 设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。f(x)的带拉格朗日余项的一阶麦克劳林公式为(  )。

考题 函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设f(x)在[a, b]上连续, 且f(a) b, 试证在(a, b)内至少存在一个 , 使

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 设f(x)在[a,b]上连续,在(a,b)内可导

考题 设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )

考题 设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值 B.f(x)在[a,b]上一致连续 C.f(x)在[a,b]上可积 D.f(x)在[a,b]上可导

考题 设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y) 证明:(1)f在R上连续;(2)f(x)=xf(1)。

考题 设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值 B.f(x)在(a,b)上必一致连续 C.f(x)在(a,b)上必有 D.f(x)在(a,b)上必连续

考题 已知函数f(x)在闭区间[a,b].上连续,且f(a).f(b)

考题 设?(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )A.(x)在(a,b)上必有最大值 B.(x)在(a,b)上必一致连续 C.(x)在(a,b)上必有界 D.(x)在(a,b)上必连续

考题 设f(x)在积分区间上连续,则等于( )。 A. -1 B. 0 C. 1 D. 2

考题 设.f(x)在[a,b]上连续,x∈[a,b],则下列等式成立的是(  )

考题 问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

考题 问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

考题 问答题设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。

考题 单选题设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。A P(x)在[a,b]上连续B P(Xk)=YkC P(x)在[α,b]上可导D P(x)在各子区间上是线性函数

考题 问答题设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。