网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为,求.


参考答案

参考解析
解析:
更多 “设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.” 相关考题
考题 可对角化的矩阵是____。 A.实对称阵B.有n个相异特征值的n阶阵C.有n个线性无关的特征向量的n阶方阵

考题 设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

考题 设对称实矩阵,求其特征值和特征向量。

考题 已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

考题 矩阵对应特征值λ=-1的全部特征向量为( )。

考题 设A是3阶方阵,A能与对角阵相似的充分必要条件是( ).A. B.A是实对称阵 C.A有3个线性无关的特征向量 D.A有3个不同的特征值

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A

考题 设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

考题 设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

考题 设二维非零向量α不是二阶方阵A的特征向量.   (1)证明α,Aα线性无关;   (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;

考题 设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A^2(α1+α2)=α1+α2,则|A|=________.

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

考题 设A是3阶方阵,A能与对角阵相似的充分必要条件是().A、存在可逆阵P,使得P-1AP=BB、A是实对称阵C、A有3个线性无关的特征向量D、A有3个不同的特征值

考题 设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A、3B、5C、7D、不能确定

考题 单选题设A是3阶方阵,A能与对角阵相似的充分必要条件是().A 存在可逆阵P,使得P-1AP=BB A是实对称阵C A有3个线性无关的特征向量D A有3个不同的特征值

考题 单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A α1-α2是A的属于特征值1的特征向量B α1-α3是A的属于特征值1的特征向量C α1-α3是A的属于特征值2的特征向量D α1+α2+α3是A的属于特征值1的特征向量

考题 单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A α是矩阵-2A的属于特征值-2λ的特征向量B α是矩阵的属于特征值的特征向量C α是矩阵A*的属于特征值的特征向量D α是矩阵AT的属于特征值λ的特征向量

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα