网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.


参考答案

参考解析
解析:
更多 “设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.” 相关考题
考题 设A为非奇异对称矩阵,则____仍为对称矩阵。 A.A的转置B.A的逆矩阵C.3AD.A与A的转置的乘积

考题 n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A是n阶实对称矩阵,则A有n个()特征值.

考题 设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B) B.|A|=|B| C.A~B D.A,B与同一个实对称矩阵合同

考题 设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵 B.设A,B可逆,则A^-1+B^-1为对称矩阵 C.A+B为对称矩阵 D.kA为对称矩阵

考题 设A是一个n阶矩阵,那么是对称矩阵的是( ).

考题 设A为n阶矩阵,k为常数,则(kA)+等于().

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n) B.A的所有特征值非负 C. D.秩(A)=n

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设A为n×1矩阵,矩阵.试证B为对称矩阵.如果A=(1,-1,2)T,求B.

考题 设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

考题 已知n阶实对称矩阵Α≈B,证明:对于任何自然数k,

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

考题 设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。