网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

【单选题】用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=g(x),则f(x)=0的根是()。

A.y=x与y=g(x)交点的横坐标

B.y=g(x)与x轴交点的横坐标

C.y=x与x轴的交点的横坐标

D.y=x与y=g(x)的交点


参考答案和解析
<1
更多 “【单选题】用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=g(x),则f(x)=0的根是()。A.y=x与y=g(x)交点的横坐标B.y=g(x)与x轴交点的横坐标C.y=x与x轴的交点的横坐标D.y=x与y=g(x)的交点” 相关考题
考题 用迭代法求方程f(x)=x^3-x-1=0的根,取x0=1.5。() A、1.5B、1.35721C、1.32494D、1.32588

考题 设f(x)=(x-1)(x-2)(x-3),则方程f′(x)=0在(0,3)内的根的个数为(56)。A.1B.2C.3D.4

考题 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y"+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件? A.f1(x) *f'2(x)-f2(x)f'1(x)=0 B.f1(x) * f’2(x)-f2(x) *f'1(x)≠0 C.f1(x)f'2(x)+f2(x)*f'1(x) =0 D.f1(x)f'2(x)+f2(x)*f'1(x) ≠0

考题 设f(x)=x(x-1)(x-2),则方程 的实根个数是(  )。A、 3 B、 2 C、 1 D、 0

考题 若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根 B.至少有一个根 C.没有根 D.以上结论都不对

考题 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y''+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件? A. f1(x)*f'2(x)-f'1(x)*f2(x)=0 B. f1(x)*f'2(x)-f'1(x)*f2(x)≠0 C. f1(x)*f'2(x)+f'1(x)*f2(x)=0 D. f1(x)*f'2(x)+f'1(x)*f2(x)≠0

考题 若函数f(x)满足方程f"(x)+f'(x)-2f(x)=0及f"(x)+f(x)=2e……x,则f(x)=________.

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 设x=a是代数方程f(x)=0的根,则下列结论不正确的是( )。 A、 叫是f(x)的因式 B、X-a整除f(x) C、(a,0)是函数y=f(x)的图象与2轴的交点 D、 f(a)=0

考题 用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A、y=φ(x)与x轴交点的横坐标B、y=x与y=φ(x)交点的横坐标C、y=x与x轴的交点的横坐标D、y=x与y=φ(x)的交点

考题 用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A、f(x0)f″(x)0B、f(x0)f′(x)0C、f(x0)f″(x)0D、f(x0)f′(x)0

考题 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A、f1(x)·f′2(x)-f2(x)f′1(x)=0B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0C、f1(x)f′2(x)+f2(x)·f′1(x)=0D、f1(x)f′2(x)+f2(x)f′1(x)≠0

考题 若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

考题 单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?()A f1(x)f′2(x)-f2(x)f′1(x)=0B f1(x)f′2(x)-f2(x)f′1(x)≠0C f1(x)f′2(x)+f2(x)f′1(x)=0D f1(x)f′2(x)+f2(x)f′1(x)≠0

考题 单选题用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A f(x0)f″(x)0B f(x0)f′(x)0C f(x0)f″(x)0D f(x0)f′(x)0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 单选题设f(x)=x(x-1)(x-2),则方程f′(x)=0的实根个数是(  )。[2016年真题]A 3B 2C 1D 0

考题 单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则(  )A x0不是f(x)g(x)的驻点B x0是f(x)g(x)的驻点,但不是它的极值点C x0是f(x)g(x)的驻点,且是它的极小值点D x0是f(x)g(x)的驻点,且是它的极大值点

考题 单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A f1(x)·f′2(x)-f2(x)f′1(x)=0B f1(x)·f′2(x)-f2(x)·f′1(x)≠0C f1(x)f′2(x)+f2(x)·f′1(x)=0D f1(x)f′2(x)+f2(x)f′1(x)≠0

考题 单选题设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为(  )。A f1(x)f2′(x)-f2(x)f1′(x)=0B f1(x)f2′(x)+f1′(x)f2(x)=0C f1(x)f2′(x)-f1′(x)f2(x)≠0D f1′(x)f2(x)+f2(x)f1(x)≠0

考题 单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A 没有实根B 有两个实根C 有无穷多个实根D 有且仅有一个实根

考题 单选题若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A 只有一个根B 至少有一个根C 没有根D 以上结论都不对

考题 单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).A 曲线C的方程是f(x,y)=0B 以方程f(x,y)=0的解为坐标的点都在曲线C上C 方程f(x,y)=0的曲线是CD 方程f(x,y)=0表示的曲线不一定是C

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

考题 单选题用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A y=φ(x)与x轴交点的横坐标B y=x与y=φ(x)交点的横坐标C y=x与x轴的交点的横坐标D y=x与y=φ(x)的交点

考题 单选题设f(x)=x(x-1)(x-2),则方程f'(x)=0的实根个数是:A 3B 2C 1D 0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0