网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().
A

只有一个根

B

至少有一个根

C

没有根

D

以上结论都不对


参考答案

参考解析
解析: 暂无解析
更多 “单选题若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A 只有一个根B 至少有一个根C 没有根D 以上结论都不对” 相关考题
考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 设有方程f(x)=0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分法求该方程在区间[a,b]上的一个实根,采用的算法设计技术为( )

考题 设有方程f(x)一0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分化法求该方程在区间[a’b]上的一个实根,采用的算法设计技术为

考题 若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。 A.必存在且只有一个 B.至少存在一个 C.不一定存在 D.不存在

考题 以下四个命题中,正确的是( )A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界 B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界 C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界 D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界

考题 下列命题正确的是(). A若|f(x)|在x=a处连续,则f(x)在x=a处连续 B若f(x)在x=a处连续,则|f(x)|在x=a处连续 C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续 D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 A.F(x)在x=0点不连续 B.F(x)在(-∞,+∞)内连续,在x=0点不可导 C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x) D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

考题 若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0 B.f′(x)<0,f″(x)>0 C.f′(x)>0,f″(x)<0 D.f′(x)>0,f″(x)>0

考题 若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根 B.至少有一个根 C.没有根 D.以上结论都不对

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续 B.单调 C.可导 D.有界

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.

考题 若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题若f(x)在x0点可导,则|f(x)|在点x0点处(  )。A 必可导B 连续但不一定可导C 一定不可导D 不连续

考题 单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A 没有实根B 有两个实根C 有无穷多个实根D 有且仅有一个实根

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]A f′(x)>0,f″(x)<0B f′(x)<0,f″(x)>0C f′(x)>0,f″(x)>0D f′(x)<0,f″(x)<0

考题 单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).A 曲线C的方程是f(x,y)=0B 以方程f(x,y)=0的解为坐标的点都在曲线C上C 方程f(x,y)=0的曲线是CD 方程f(x,y)=0表示的曲线不一定是C

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。

考题 单选题设f(x)=x(x-1)(x-2),则方程f'(x)=0的实根个数是:A 3B 2C 1D 0