网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设E为n阶单位阵,则E的特征值为 .


参考答案和解析
1
更多 “设E为n阶单位阵,则E的特征值为 .” 相关考题
考题 若A为n阶阵,E为n阶单位阵,下列命题正确的有____。 A.R(A)+R(A-E)不小于nB.R(A)+R(A+E)不小于nC.R(A)不大于n

考题 设A为三阶方阵,其特征值为1,-1,2,则A^2的特征值为1,1,4。() 此题为判断题(对,错)。

考题 设n阶矩阵A有一个特征值3,则|-3E+A|=_________.

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

考题 设A是n阶实对称矩阵,则A有n个()特征值.

考题 设A是n阶矩阵,且E+3A不可逆,则()。 A.3是A的特征值B.-3是A的特征值C.1/3是A的特征值D.-1/3是A的特征值

考题 设A,B为N阶矩阵,且A,B的特征值相同,则().A.A,B相似于同一个对角矩阵 B.存在正交阵Q,使得Q^TAQ=B C.r(A)=r(B) D.以上都不对

考题 设A,B为n阶可逆矩阵,则().

考题 设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有A.ACB=E B.CBA=E C.BAC=E D.BCA=E

考题 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= A.E B.-E C.A D.-A

考题 设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:

考题 设A,B为n阶矩阵.   (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

考题 设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A

考题 设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.

考题 设A是三阶矩阵,有特征值是A的伴随矩阵,E是三阶单位阵,则

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。

考题 设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A、25B、12.5C、5D、2.5

考题 问答题设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。

考题 填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A (A+E)/2B -(A+E)/2C (A-E)/2D -(A-E)/2

考题 填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

考题 单选题设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A 25B 12.5C 5D 2.5

考题 单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A A+2EB A+EC (A+E)/2D -(A+E)/2