网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

矩阵A可以通过左乘可逆矩阵化成最简阵吗


参考答案和解析
错误
更多 “矩阵A可以通过左乘可逆矩阵化成最简阵吗” 相关考题
考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 用一初等矩阵左乘一矩阵B,等于对B施行相应的()变换。 A、行变换B、列变换C、既不是行变换也不是列变换

考题 matlab中,表示()A.矩阵A的逆右乘BB.B矩阵A的逆左乘BC.矩阵B的逆左乘AD.矩阵B的逆右乘A

考题 设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

考题 设A,B为同阶可逆矩阵,则( )。A.AB=BA B. C. D.存在可逆矩阵P和Q,使PAQ=B

考题 对任一矩阵A,则一定是( ). A.可逆矩阵 B.不可逆矩阵 C.对称矩阵 D.反对称矩阵

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 用矩阵分块的方法,证明矩阵可逆,并求其逆矩阵.

考题 设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

考题 将矩阵化成最简形矩阵

考题 设矩阵相似于矩阵. (1)求a,b的值;(2)求可逆矩阵P,使为对角阵

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 已知A,B和A+B均为可逆矩阵,试证也可逆,并求其逆矩阵.

考题 证明:若矩阵A可逆,则其逆矩阵必然唯一.

考题 证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同

考题 设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

考题 设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

考题 已知a是常数,且矩阵可经初等列变换化为矩阵.   (Ⅰ)求a;   (Ⅱ)求满足AP=B的可逆矩阵P.

考题 以下是对称阵的有( )。A.雅可比矩阵 B.节点导纳矩阵 C.节点阻抗矩阵 D.节点电压矩阵

考题 节点导纳矩阵是( )。A.对称的满阵 B.对称的稀疏矩阵 C.不对称的满阵 D.不对称的稀疏矩阵

考题 求可逆矩阵A的逆矩阵的指令是()

考题 创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 问答题创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。