网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
过抛物线y2=4x的焦点,倾斜角为45°的直线方程为_______。


参考答案

参考解析
解析:【答案】x-y-1=0。解析:抛物线y2=4x的焦点为(1,0),倾斜角为45°的直线斜率为1,则直线方程为x-y-1=0。
更多 “过抛物线y2=4x的焦点,倾斜角为45°的直线方程为_______。” 相关考题
考题 已知过点(0,4),斜率为-1的直线l与抛物线C:y2—2px(b>0)交于A,B两点.(I)求C的顶点到2的距离;(Ⅱ)若线段AB中点的横坐标为6,求C的焦点坐标.

考题 抛物线y2=-4x的准线方程为 ( )A.x=-1B.x=1C.y=1D.Y=-l

考题 已知A,B是抛物线y2=4x上的两个动点,且|AB|=3,则当AB的中点M到y轴的距离最短时,点M的横坐标是____.

考题 抛物线y2=3x的准线方程为 ( )A.AB.BC.CD.D

考题 用最小平方法拟合出的趋势方程为:,该方程反映的趋势线是一条( )。A.上升直线B.下降直线C.指数曲线D.抛物线

考题 已知双曲线C:x2/a2-y2/b2=1(a>0,b>0)的一个焦点是抛物线y2=8x的焦点,且双曲线C的离心率为2,那么双曲线C的方程为_______。

考题 过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是(  ).

考题 (1)求椭圆的标准方程; (2)F2为椭圆的右焦点,过椭圆的中心作一条倾斜角为45°的直线与椭圆交于A、B两点,求△ABF2的面积.

考题 顶点在原点、焦点在χ轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程为_____.

考题 抛物线y2=4x上一点P到焦点F的距离是10,则点P坐标是(  )A.(9,6) B.(9,±6) C.(6,9) D.(±6,9)

考题 以抛物线y2=8x的焦点为圆心,且与此抛物线的准线相切的圆的方程是(  )A.(x+2)2+y2=16 B.(x+2)2+y2=4 C.(x-2)2+y2=16 D.(x-2)2+y2=4

考题 设直线y=2x+m与抛物线y2=4x没有公共点,则m的取值范围是。

考题 A.B是抛物线y2=8x上两点,且此抛物线的焦点在线段AB上,已知A.B两点的横坐标之和为10,则|AB|=(  )A.18 B.14 C.12 D.10

考题 点在平面内的运动方程为,则其轨迹为( )。 A.椭圆曲线 B.圆弧曲线 C.直线 D.抛物线

考题 已知M是抛物线y2=2px(p>0)上的点,F是抛物线的焦点,∠FOM=45o,|MF|=2。 (1)求抛物线的方程式;

考题 已知P为抛物线y2=x的焦点,点M,N在该抛物线上且位于x轴的两侧, (其中O为坐标原点),则ΔMPO与ΔNPO面积之和的最小值是( )。

考题 设抛物线y2=2px(p>0)焦点为F,点A坐标为(0,2),若线段FA的中点B在抛物线上,则B到该抛物线准线距离为__________。

考题 已知抛物线y2=2px(p>0),过定点(p,0)作两条互相垂直的直线l1、l2,l1与抛物线交于

考题 抛物线公式为y2=2px。

考题 曲线方程y2=2px所描述的是()。A、摆线B、渐开线C、双曲线D、抛物线

考题 方程 y2 = 2px(p>0)是抛物线标准方程(SIEMENS系统)。

考题 方程y2=2px(p>0)是抛物线标准方程(FANUC系统、华中系统)。

考题 根据逻辑斯蒂克方程绘制的曲线为()。A、丁型B、抛物线型C、S型D、直线型

考题 假定导线的荷载,视为沿直线均匀分布推出的公式称为()。A、平抛物线方程B、斜抛物线方程C、悬链线方程D、状态方程

考题 单选题根据逻辑斯蒂克方程绘制的曲线为()。A 丁型B 抛物线型C S型D 直线型

考题 填空题若直线ax-y+1=0经过抛物线y2=4x的焦点,则实数a=____.

考题 单选题过抛物线y=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程()A y=2x-1B y=2x-2C y=-2x+1D -2x+2