网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
判断题
对于总体的被估计指标X,找出样本的两个估计量x1和x2,使X落在区间(x1,x2)内的概率为已知。这就是区间估计。
A

B


参考答案

参考解析
解析: 暂无解析
更多 “判断题对于总体的被估计指标X,找出样本的两个估计量x1和x2,使X落在区间(x1,x2)内的概率为已知。这就是区间估计。A 对B 错” 相关考题
考题 设X1,X2是来自N(μ,1)的样本,则()是总体均值μ的无偏估计。

考题 设X1,X2为来自总体X~N(μ,б2)的样本,若为μ的一个无偏估计,则C=()。

考题 从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().

考题 设总体X的概率密度为 未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

考题 设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:

考题 设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:

考题 设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:与都是参数θ的无偏估计量,试比较其有效性.

考题 设总体X的分布函数为      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:   (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.

考题 设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.

考题 设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).

考题 设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.

考题 设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.

考题 设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

考题 设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,   X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

考题 设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.

考题 设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.

考题 设总体X的概率密度为    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本. (Ⅰ)求参数λ的矩估计量; (Ⅱ)求参数λ的最大似然估计量.

考题 设总体X的概率密度为      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.   (Ⅰ)求A;   (Ⅱ)求σ的最大似然估计量.

考题 设总体X的概率密度为      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.   (Ⅰ)求θ的矩估计量;   (Ⅱ)求θ的最大似然估计量.

考题 设总体X的概率密度为      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.   (Ⅰ)求θ的矩估计量;   (Ⅱ)求θ的最大似然估计量.

考题 设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).   (Ⅰ)求T的概率密度;   (Ⅱ)确定a,使得aT为θ的无偏估计.

考题 设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。

考题 设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:

考题 设总体X的数学期望为μ,X1,X2,...,Xn为来自X的样本,则下列结论中正确的是()A、X1是μ的无偏估计量.B、X1是μ的极大似然估计量.C、X1是μ的相合(一致)估计量.D、X1不是μ的估计量.

考题 对于总体的被估计指标X,找出样本的两个估计量x1和x2,使X落在区间(x1,x2)内的概率为已知。这就是区间估计。

考题 单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )A f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

考题 问答题总体x~N(μ,σ2),x1,x2,…,xn为其样本,未知参数μ的矩估计为_______ .