2021年MBA考试《数学》模拟试题(2021-09-27)
发布时间:2021-09-27
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理精选模拟习题10道,附答案解析,供您考前自测提升!
1、圆外切正方形和内接正方形的相似比是。()(1)若圆的半径为1(2)若圆的半径为2【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:如图所示,,△ACD为等腰直角三角形。设CD=a,则,因此,与圆的半径无关,因此条件(1)和条件(2)都充分。
2、4位老师分别教4个班的课,考试时要求老师不在本班监考,则不同的监考方法共有()。【问题求解】
A.8种
B.9种
C.10种
D.11种
E.12种
正确答案:B
答案解析:设教师A,B,C,D分别教甲、乙、丙、丁四个班,A有3种可能,监考乙、丙或丁班。若选定乙班,B,C和D三人监考甲、丙和丁班,有3种可能方法,即总共有3×3=9种不同方法。
3、将3只小球放入甲、乙、丙、丁4个盒子中,则每个盒子中至多放入2只小球的放法共有()种。【问题求解】
A.56
B.60
C.68
D.74
E.78
正确答案:B
答案解析:可设为两种方案A:一个盒中放2只球,另一个盒中放1只球B:三个盒中各放1只球由乘法原理:A的放法有;B的放法有;共有 36+24=60(种)。
4、设是等比数列,其的值可唯一确定。()(1)(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:设数列公比为q。由条件(1),,得 1+q=(q+1)(q-1),从而q=2,,因此的值可以唯一确定,条件(1)充分。由条件(2),即,条件(2)不充分。
5、的解是()。【问题求解】
A.3
B.-7
C.3或-7
D.3或7
E.7
正确答案:C
答案解析:即整理得解析:得x=-7或x=3。
6、方程有两个相等的实数根,则必有()。【问题求解】
A.k=0
B.k≥0
C.
D.
E.k<0
正确答案:C
答案解析:由已知k≠0且,解得。
7、当x=1时,的值是3,则(a+b-1)(1-a-b)=()。【问题求解】
A.1
B.-1
C.2
D.-2
E.0
正确答案:B
答案解析:当x=1时,可得a+b=2,从而(a+b-1)(1-a-b)=(2-1)(1-2)=-1。
8、已知方程的两根为,则()。【问题求解】
A.18
B.22
C.50
D.36
E.-50
正确答案:B
答案解析:由根与系数的关系,则。
9、已知是关于x的方程的两个实数根,是关于y的方程的两个实数根,且,则m,n的值为()。【问题求解】
A.2,-4
B.4,19
C.4,29
D.-4,- 29
E.以上结论均不正确
正确答案:E
答案解析:由已知,即知:,得m=1或m=4,若m=1,无实数根,从而必有m=4。再由知,当m=4时,。即,得n=-29。
10、边点P(3,0)作直线L,使其被两直线2x-y-2=0和x+y+3=0所截得的线段恰好被P点平分,则直线L的方程是()。【问题求解】
A.8x-y-24=0
B.7x-y-21=0
C.6x-y-18=0
D.9x-y-27=0
E.10x-y-30=0
正确答案:A
答案解析:如图所示,设所求直线l与相交于l与相交于。线段AB的中点为P(3,0),因此B点坐票为,因为A,B两点分别在直线x+y+3=0和2x-y-2=0上,可得方程组,解得A点坐标为。由两点式可得直线方程是8x-y-24=0。
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2019-10-29
- 2020-09-24
- 2021-05-12
- 2021-01-20
- 2020-05-26
- 2020-07-23
- 2021-08-18
- 2021-10-01
- 2021-02-03
- 2021-06-15
- 2021-10-28
- 2021-12-29
- 2021-11-10
- 2020-12-28
- 2021-01-22
- 2020-02-15
- 2021-01-09
- 2021-02-27
- 2021-07-29
- 2020-04-03
- 2020-02-19
- 2020-01-18
- 2019-11-16
- 2021-05-03
- 2021-05-29
- 2020-02-09
- 2020-06-24
- 2021-04-04
- 2020-10-23
- 2020-12-03