网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。
A
若Ax=0仅有零解,则Ax=b有唯一解
B
若Ax=0有非零解,则Ax=b有无穷多个解
C
若Ax=b有无穷多个解,则Ax=0仅有零解
D
若Ax=b有无穷多个解,则Ax=0有非零解
参考答案
参考解析
解析:
由解的判定定理知,对Ax=b,若有r(A)=r(A)=r,则Ax=b一定有解。进一步,若r=n,则Ax=b有唯一解;若r<n,则Ax=b有无穷多解。而对Ax=0一定有解,且设r(A)=r,则若r=n,Ax=0仅有零解;若r<n,Ax=0有非零解。因此,若Ax=b有无穷多解,则必有r(A)=r(A)=r<n,Ax=0有非零解,所以D项成立。但反过来,若r(A)=r=n(或<n),并不能推导出r(A)=r(A),所以Ax=b可能无解,更谈不上有唯一解或无穷多解。
由解的判定定理知,对Ax=b,若有r(A)=r(A)=r,则Ax=b一定有解。进一步,若r=n,则Ax=b有唯一解;若r<n,则Ax=b有无穷多解。而对Ax=0一定有解,且设r(A)=r,则若r=n,Ax=0仅有零解;若r<n,Ax=0有非零解。因此,若Ax=b有无穷多解,则必有r(A)=r(A)=r<n,Ax=0有非零解,所以D项成立。但反过来,若r(A)=r=n(或<n),并不能推导出r(A)=r(A),所以Ax=b可能无解,更谈不上有唯一解或无穷多解。
更多 “单选题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A 若Ax=0仅有零解,则Ax=b有唯一解B 若Ax=0有非零解,则Ax=b有无穷多个解C 若Ax=b有无穷多个解,则Ax=0仅有零解D 若Ax=b有无穷多个解,则Ax=0有非零解” 相关考题
考题
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()
A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
考题
设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
B.k1ξ1+k1ξ2是Ax=0的通解
C.k1ξ1+ξ2是Ax=0的通解
D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系
考题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解
考题
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.
考题
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④
考题
单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A
①②B
①③C
②④D
③④
考题
单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是( )。A
A的任意m个列向量必线性无关B
A的任一个m阶子式不等于0C
非齐次线性方程组AX(→)=b(→)一定有无穷多组解D
A通过行初等变换可化为(Em,0)
热门标签
最新试卷