网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
矩阵对应特征值λ=-1的全部特征向量为( )。


参考答案

参考解析
解析:λ=-1时,解方程组(A+E)X=0,,得基础解系,故全部特征向量为(k≠0)
更多 “矩阵对应特征值λ=-1的全部特征向量为( )。” 相关考题
考题 雅可比方法是求对称矩阵全部特征值与特征向量的方法。() 此题为判断题(对,错)。

考题 n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。A.1/3B.1C.3D.9

考题 设对称实矩阵,求其特征值和特征向量。

考题 已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

考题 设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A

考题 设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

考题 设为n阶方阵A的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,证明X1,X2不是矩阵A的特征向量。

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

考题 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(  )。 A、λ1=0 B、λ2=0 C、λ1≠0 D、λ2≠0

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

考题 已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量

考题 单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A α1-α2是A的属于特征值1的特征向量B α1-α3是A的属于特征值1的特征向量C α1-α3是A的属于特征值2的特征向量D α1+α2+α3是A的属于特征值1的特征向量

考题 单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A α是矩阵-2A的属于特征值-2λ的特征向量B α是矩阵的属于特征值的特征向量C α是矩阵A*的属于特征值的特征向量D α是矩阵AT的属于特征值λ的特征向量

考题 问答题证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

考题 单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A β是A的属于特征值0的特征向量B α是A的属于特征值0的特征向量C β是A的属于特征值3的特征向量D α是A的属于特征值3的特征向量

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα

考题 问答题设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明:  (1)Ai(i=1,2,3)的特征值有且仅有0和1;  (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j);  (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。