网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为n阶矩阵,下列结论正确的是().


参考答案

参考解析
解析:
更多 “设A为n阶矩阵,下列结论正确的是(). ” 相关考题
考题 设A为n阶方阵,则以下结论正确的是( )。

考题 设A为n阶可逆矩阵,则下面各式恒正确的是( ).

考题 设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵 B.设A,B可逆,则A^-1+B^-1为对称矩阵 C.A+B为对称矩阵 D.kA为对称矩阵

考题 设A是一个n阶矩阵,那么是对称矩阵的是( ).

考题 设A为n阶矩阵,k为常数,则(kA)+等于().

考题 设A,B为n阶可逆矩阵,则().

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=O B.A=E C.若A不可逆,则A=O D.若A可逆,则A=E

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 设A,B均为n 阶方阵,下面结论正确的是( ).

考题 下列结论中正确的是(  )。 A、 矩阵A的行秩与列秩可以不等 B、 秩为r的矩阵中,所有r阶子式均不为零 C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零 D、 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设A,B为n阶矩阵,且r(A)+r(B)

考题 设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A是m阶矩阵,B是n阶矩阵,行列式等于( )。

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式