网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
参考答案
参考解析
解析:
更多 “设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.” 相关考题
考题
下述结论中,不正确的有()
A.若向量a与β正交,则对任意实数a,b,aα与bβ也正交B.若向量β与向量a1,a2都正交,则β与a1,a2的任一线性组合也正交C.若向量a与正交,则a,β中至少有一个是零向量D.若向量a与任意同维向量正交,则a是零向量.
考题
设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:
A. A的行向量组线性相关
B. A的列向量组线性相关
C. B的行向量组线性相关
D. r(A)+r(B)≤n
考题
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。
A、矩阵A的任意两个列向量线性相关
B、矩阵A的任意两个列向量线性无关
C、矩阵A的任一列向量是其余列向量的线性组合
D、矩阵A必有一个列向量是其余列向量的线性组合
考题
单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A
A的行向量组线性相关B
A的列向量组线性相关C
B的行向量组线性相关D
r(A)+r(B)≤n
考题
问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明: (1)A2=A的充要条件是α(→)Tα(→)=1; (2)当α(→)Tα(→)=1时,A是不可逆矩阵。
考题
问答题设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.
热门标签
最新试卷