网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设x为n维列向量,,令,证明H是对称的正交阵.


参考答案

参考解析
解析:
更多 “设x为n维列向量,,令,证明H是对称的正交阵.” 相关考题
考题 设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则() A、A=0B、A=EC、r(A)=nD、0r(A)(n)

考题 设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

考题 设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().A.1 B.2 C.3 D.4

考题 设A是三阶实对称矩阵,若对任意的三维列向量X,有X^TAX=0,则().A.|A|=0 B.|A|>0 C.|A|D.以上都不对

考题 设A是n阶方阵,a是n维列向量,下列运算无意义的是( ).A. B. C.αA D.Aα

考题 设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值( )。A.大于0 B.等于0 C.小于0 D.无法确定

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.

考题 设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。

考题 设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.

考题 试证,若n维向量a与正交,则对于任意实数k,l,有ka与l正交

考题 设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

考题 设A为三阶方阵,为三维线性无关列向量组,且有求 (I)求A的全部特征值(II)A是否可以对角化?

考题 设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

考题 设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

考题 设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。A、大于0B、等于0C、大于0D、无法确定

考题 设A是n阶方阵,α是n维列向量,下列运算无意义的是().A、αTAαB、ααTC、αAD、Aα

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。A 大于0B 等于0C 大于0D 无法确定

考题 单选题设A是n阶方阵,α是n维列向量,下列运算无意义的是().A αTAαB ααTC αAD Aα

考题 单选题已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。A |A|>0B |A|=0C |A|<0D 以上三种都有可能

考题 问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

考题 问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

考题 问答题设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

考题 问答题设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.