网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。
参考答案
参考解析
解析:
更多 “设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。” 相关考题
考题
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
考题
设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:
A. A的行向量组线性相关
B. A的列向量组线性相关
C. B的行向量组线性相关
D. r(A)+r(B)≤n
考题
设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )
A.矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的行向量组与矩阵B的列向量组等价
考题
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。
A、矩阵A的任意两个列向量线性相关
B、矩阵A的任意两个列向量线性无关
C、矩阵A的任一列向量是其余列向量的线性组合
D、矩阵A必有一个列向量是其余列向量的线性组合
考题
设A是mxn的非零矩阵,B是nxl非零矩阵,满足AB=0,以下选项中不一定成立的是:
A. A的行向量组线性相关 B. A的列向量组线性相关
C.B的行向量组线性相关 D.r(A)+r(B)≤n
考题
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则
A.A矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的列向量组与矩阵B的列向量组等价
考题
设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关
B.方程组AX=b有无穷多解
C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关
D.A的任意4个列向量构成的向量组线性无关
考题
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C
向量组α1,…,αm与向量组β1,…,βm等价D
矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
考题
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A
矩阵A的任意两个列向量线性相关B
矩阵A的任意两个列向量线性无关C
矩阵A的任一列向量是其余列向量的线性组合D
矩阵A必有一个列向量是其余列向量的线性组合
考题
单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A
A的行向量组线性相关B
A的列向量组线性相关C
B的行向量组线性相关D
r(A)+r(B)≤n
考题
单选题设A为4×5矩阵,且A的行向量组线性无关,则( )。A
A的列向量组线性无关B
方程组AX(→)=b(→)有无穷多解C
方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关D
A的任意4个列向量构成的向量组线性无关
考题
问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明: (1)A2=A的充要条件是α(→)Tα(→)=1; (2)当α(→)Tα(→)=1时,A是不可逆矩阵。
考题
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A
向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B
向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C
向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D
矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
热门标签
最新试卷