网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3),且与c=(2,-1,1)的数量积为-6,则向量x=( )。
A
(-3,3,3)
B
(-3,1,1)
C
(0,6,0)
D
(0,3,-3)
参考答案
参考解析
解析:
由题意可得,x∥a×b,而a×b=(2,3,-1)×(1,-2,3)=(7,-7,-7)=7(1,-1,-1),所以x=k(1,-1,-1)。再由x•c=2k+k-k=2k=-6,得k=-3,所以x=(-3,3,3)。
由题意可得,x∥a×b,而a×b=(2,3,-1)×(1,-2,3)=(7,-7,-7)=7(1,-1,-1),所以x=k(1,-1,-1)。再由x•c=2k+k-k=2k=-6,得k=-3,所以x=(-3,3,3)。
更多 “单选题设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3),且与c=(2,-1,1)的数量积为-6,则向量x=( )。A (-3,3,3)B (-3,1,1)C (0,6,0)D (0,3,-3)” 相关考题
考题
设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3)且与c=(2,-1,1)的数量积为-6,则向量x=( )。A.(-3,3,3)
B.(-3,1,1)
C.(0,6,0)
D.(0,3,-3)
考题
A.过点(-1,2,-3),方向向量为i+2j-3k
B.过点(-1,2,-3),方向向量为-i-2j+3k
C.过点(1,2,-3),方向向量为i-2j+3k
D.过点(1,-2,3),方向向量为-i-2j+3k
考题
向量α=(2,1,-1),若向量β与α平行,且α·β=3,则β为( )。
A.(2,1,-1)
B.(3/2,3/4,-3/4)
C.(1,1/2,-1/2)
D.(1,-1,1/2)
考题
过点(2,-3,1)且平行于向量a=(2,-1,3)和b=(-1,1,-2)的平面方程是( ).A.-x+y+z-4=0
B.x-y-z-4=0
C.x+y+z=0
D.x+y-z+2=0
考题
设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。A、1B、2C、3D、4
考题
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C
向量组α1,…,αm与向量组β1,…,βm等价D
矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
考题
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A
向量组(Ⅰ)与(Ⅱ)都线性相关B
向量组(Ⅰ)线性相关C
向量组(Ⅱ)线性相关D
向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
考题
单选题设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3),且与c=(2,-1,1)的数量积为-6,则向量x=( )。A
(-3,3,3)B
(-3,1,1)C
(0,6,0)D
(0,3,-3)
考题
单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则( )。A
此两个向量组等价B
秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC
当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D
s=t时,二向量组等价
考题
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A
向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B
向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C
向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D
矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
考题
单选题若向量X(→)与向量α(→)={2,-1,2}共线,且满足方程α(→)·X(→)=-18,则X(→)=( )。A
{4,-2,4}B
{4,2,4}C
{-4,2,4}D
{-4,2,-4}
热门标签
最新试卷