网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是
A.E-A
B.-E-A
C.-2E-A
D.2E-A
参考答案和解析
B
更多 “设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是A.E-AB.-E-AC.-2E-AD.2E-A” 相关考题
考题
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A. Pa B. P-1A C. PTa D.(P-1)Ta
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta
考题
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A
PαB
P-1αC
PTαD
(P-1)Tα
热门标签
最新试卷