网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是

A.E-A

B.-E-A

C.-2E-A

D.2E-A


参考答案和解析
B
更多 “设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是A.E-AB.-E-AC.-2E-AD.2E-A” 相关考题
考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为()。 A、3,5B、1,2C、1,1,2D、3,3,5

考题 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=() A、-1B、-2C、1D、2

考题 设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=() A、A^-1CB^-1B、CA^-1B^-1C、B^-1A^-1CD、CB^-1A^-1

考题 设A为三阶方阵,其特征值为1,-1,2,则A^2的特征值为1,1,4。() 此题为判断题(对,错)。

考题 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=1。() 此题为判断题(对,错)。

考题 三阶矩阵A的特征值为-2,1,3,则下列矩阵中为非奇异矩阵的是(). A.2E-AB.2E+AC.E-AD.A-3E

考题 设A是n阶矩阵,且E+3A不可逆,则()。 A.3是A的特征值B.-3是A的特征值C.1/3是A的特征值D.-1/3是A的特征值

考题 设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵 B.设A,B可逆,则A^-1+B^-1为对称矩阵 C.A+B为对称矩阵 D.kA为对称矩阵

考题 设A,B为n阶可逆矩阵,则().

考题 设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

考题 设A是3阶可逆矩阵,交换A的1,2行得B,则

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足的可逆矩阵Q为( ?).

考题 已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵, 若矩阵Q=(a1,a2,a3),则Q-1AQ=

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设A,B为n阶矩阵.   (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

考题 已知3阶矩阵A的特征值为1,2,-3,求.

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A为3阶矩阵.P为3阶可逆矩阵,且 A. B. C. D.

考题 设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

考题 设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 填空题设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=____。

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα