网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
(1)求a的值;
(2)将β1β2β2由α1α2α3线性表示。
(1)求a的值;
(2)将β1β2β2由α1α2α3线性表示。
参考答案
参考解析
解析:(1)由于α1,α2,α3不能由β1β2β3,线性表示,对(β1,β2,β3,α1,α2,α3进行初等变换∶
故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3
故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3
更多 “设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。 (1)求a的值; (2)将β1β2β2由α1α2α3线性表示。” 相关考题
考题
设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于( ).A.1
B.2
C.3
D.任意数
考题
设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则:
A.a1-a2是A的属于特征值1的特征向量
B.a1-a3是A的属于特征值1的特征向量
C.a1-a3是A的属于特征值2的特征向量
D. a1+a2+a3是A的属于特征值1的特征向量
考题
已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是:
A.a2,a4
B.a3,a4
C.a1,a2
D.a2,a3
考题
已知λ= 2是三阶矩A的一个特征值,α1、α2是A的属于λ= 2的特征向量。 若α1=(1,2,0)T,α2=(1,0,1)T,向量β= (-1,2,-2)T,则Aβ等于( )。
A. (2,2,1)T B. (-1,2,-2)T C. (-2,4,-4)T D. (-2,-4,4)
考题
设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。A、1B、2C、3D、4
考题
填空题设α(→)1=(2,1,0,5)T,α(→)2=(-4,-2,3,0)T,α(→)3=(-1,0,1,k)T,α(→)4=(-1,0,2,1)T,则k=____时,α(→)1,α(→)2,α(→)3,α(→)4线性相关。
考题
单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A
α1-α2是A的属于特征值1的特征向量B
α1-α3是A的属于特征值1的特征向量C
α1-α3是A的属于特征值2的特征向量D
α1+α2+α3是A的属于特征值1的特征向量
考题
单选题设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().A
1B
2C
3D
任意数
考题
单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是( )。A
k(0,1,1,1)T+(1,1,0,2)T/2B
k(0,1,-1,-1)T+(1,1,0,2)T/2C
k(0,1,1,-1)T+(1,1,0,2)T/2D
k(0,1,-1,1)T+(1,1,0,2)T/2
考题
单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是( )。[2013年真题]A
α2,α4B
α3,α4C
α1,α2D
α2,α3
考题
问答题设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)r线性表示,但不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示,证明: (1)α(→)r不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示; (2)α(→)r能由α(→)1,α(→)2,…,α(→)r,β(→)线性表示。
考题
单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。A
α2,α4B
α3,α4C
α1,α2D
α2,α3
考题
单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。A
一定线性相关B
一定线性无关C
可能线性相关,也可能线性无关D
既不线性相关,也不线性无关
考题
单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则( )。A
此两个向量组等价B
秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC
当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D
s=t时,二向量组等价
考题
单选题设向量组(Ⅰ):α(→)1=(a11,a21,a31)T,α(→)2=(a12,a22,a32)T,α(→)3=(a13,a23,a33)T;向量组(Ⅱ):β(→)1=(a11,a21,a31,a41)T,β(→)2=(a12,a22,a32,a42)T,β(→)3=(a13,a23,a33,a43)T,则( )。A
(Ⅰ)相关⇒(Ⅱ)相关B
(Ⅰ)无关⇒(Ⅱ)无关C
(Ⅰ)无关⇒(Ⅱ)相关D
(Ⅰ)相关⇒(Ⅱ)无关
热门标签
最新试卷