网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
A

α2,α4

B

α3,α4

C

α1,α2

D

α2,α3


参考答案

参考解析
解析: 暂无解析
更多 “单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。A α2,α4B α3,α4C α1,α2D α2,α3” 相关考题
考题 设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。 A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3

考题 设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2).(1)求该向量组的一个极大线性无关组;

考题 已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.

考题 若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。 A、 -5 B、 5 C、 -2 D、 2

考题 求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合

考题 求向量组的秩和一个极大线性无关组,并把其余向量用此极大线性无关组线性表示。

考题 设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.

考题 求向量组的一个极大无关组,并把其余向量用极大无关组线性表示。

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S B.若向量组I线性相关,则r>s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r>s

考题 设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。 (1)求a的值; (2)将β1β2β2由α1α2α3线性表示。

考题 已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。A、α2,α4B、α3,α4C、α1,α2D、α2,α3

考题 设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().A、1B、-2C、1或-2D、任意数

考题 设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。A、1B、2C、3D、4

考题 设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().A、1B、2C、3D、任意数

考题 单选题若使向量组a1=(6,t,7)T,a2=(4,2,2)T,a3=(4,1,0)T线性相关。则t等于( )A -5B 5C -2D 2

考题 单选题设A为4×5矩阵,且A的行向量组线性无关,则(  )。A A的列向量组线性无关B 方程组AX(→)=b(→)有无穷多解C 方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关D A的任意4个列向量构成的向量组线性无关

考题 填空题已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.

考题 单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是(  )。[2013年真题]A α2,α4B α3,α4C α1,α2D α2,α3

考题 问答题设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

考题 单选题下列说法不正确的是(  )。A s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

考题 单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。A 此两个向量组等价B 秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC 当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D s=t时,二向量组等价

考题 单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是(  )。A (α(→)1,α(→)2,α(→)3)B (α(→)1,α(→)2,α(→)4)C (α(→)1,α(→)3,α(→)4)D (α(→)2,α(→)3,α(→)4)

考题 单选题设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).A (Ⅰ)是(Ⅱ)的极大线性无关组B r(Ⅰ)=r(Ⅱ)C 当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D 当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

考题 单选题设向量组(Ⅰ):α(→)1=(a11,a21,a31)T,α(→)2=(a12,a22,a32)T,α(→)3=(a13,a23,a33)T;向量组(Ⅱ):β(→)1=(a11,a21,a31,a41)T,β(→)2=(a12,a22,a32,a42)T,β(→)3=(a13,a23,a33,a43)T,则(  )。A (Ⅰ)相关⇒(Ⅱ)相关B (Ⅰ)无关⇒(Ⅱ)无关C (Ⅰ)无关⇒(Ⅱ)相关D (Ⅰ)相关⇒(Ⅱ)无关