网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设每一T的复用度为A,S的交叉矩阵为N×N,此时TST网络控制存储器的数目为()

  • A、A+N
  • B、2A
  • C、2N
  • D、3N

参考答案

更多 “设每一T的复用度为A,S的交叉矩阵为N×N,此时TST网络控制存储器的数目为()A、A+NB、2AC、2ND、3N” 相关考题
考题 设每一T的复用度为A,S的交叉矩阵为N×N,此时TST网络控制存储器的数目为() A.A+NB.2AC.2ND.3N

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().A.r(A)=s B.r(A)=m C.r(B)=s D.r(B)=n

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 设A为m×n矩阵,B为s×n矩阵.证明:.

考题 设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设A为n×1矩阵,矩阵.试证B为对称矩阵.如果A=(1,-1,2)T,求B.

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设n阶矩阵A 满足,其中s≠t,证明A可对角化

考题 设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 S接线器由m×n交叉点矩阵与一组控制存储器构成。()

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m B.r(A)=m,r(B)=n C.r(A)=n,r(B)=m D.r(A)=n,r(B)=n

考题 设T=(t1,t2,„„,tn)为概率向量,P=(Pij)n*n为概率矩阵,则当k→∞时,必有()A、TPk等于P的平衡概率矩阵B、TPk不等于P的平衡概率矩阵C、TPk与P的平衡概率矩阵中的任一行向量都相等D、TPk与P的平衡概率矩阵中的任一行向量都不相等

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。A OB -EC ED E+αTα

考题 单选题设每一T的复用度为A,S的交叉矩阵为N×N,此时TST网络控制存储器的数目为()A A+NB 2AC 2ND 3N

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A 4B 2C -1D 1

考题 问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。