网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标


参考答案

参考解析
解析:
更多 “设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标 ” 相关考题
考题 已知曲线C为y= 2x2,直线l为y= 4x.(10分)(1)求由曲线C与直线l所围成的平面图形的面积S;(2)求过曲线C且平行于直线l的切线方程.

考题 设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。

考题 由曲线y=x3,y=0,x=-1,x=l所围图形的面积为____。

考题 求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.

考题 设曲线y=1/x与直线y=x及x=2所围图形的面积为A,则计算A的积分表达式为( ).A. B. C. D.

考题 设L是连接点A(1,0)及点B(0,1)的直线段,则对弧长的曲线积分∫L(y-x)ds等于:

考题 设平面方程x+y+Z+1=0,直线的方程是l-x=y+1= z,则直线与平面: (A)平行 (B)垂直 (C)重合 (L)相交但不垂直

考题 求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.

考题 设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如 图1—3—2中阴影部分所示). 图1—3—1 图1—3—2 ①求D的面积S; ②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.

考题 已知曲线C为y=2x2及直线L为y=4x. ①求由曲线C与直线L所围成的平面图形的面积S; ②求曲线C的平行于直线L的切线方程.

考题 ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S; ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.

考题 设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)· ①求平面图形的面积; ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

考题 ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S: ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

考题 求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

考题 设封闭曲线L的极坐标方程为,则L所围成的平面图形的面积为

考题 设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标

考题 设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

考题 已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.

考题 设函数y(x)是微分方程满足条件y(0)=0的特解.   (Ⅰ)求y(x);   (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.

考题 设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.   (Ⅰ)求曲面∑的方程;   (Ⅱ)求Ω的形心坐标.

考题 过点(0,1)点作曲线的切线,切点为A,又L与x轴交于B点,区域D由与L直线AB及x轴围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.

考题 求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?

考题 设曲线及x=0所围成的平面图形为D. (1)求平面图形D的面积s. (2)求平面图形D绕y轴旋转一周生成的旋转体体积V

考题 求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·

考题 设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.

考题 设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

考题 (1)求曲线y=f(x); (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.

考题 (1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示) 的面积A. (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.