网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设a,b,c是任意的非零平面向量,且相互不共线,有以下结论 ①(a·b)·c-(c·a)·b=0; ②|a|-|b|2-4|b|2, 其中正确的是()。
A
①②
B
②③
C
③④
D
②④
参考答案
参考解析
解析:
暂无解析
更多 “单选题设a,b,c是任意的非零平面向量,且相互不共线,有以下结论 ①(a·b)·c-(c·a)·b=0; ②|a|-|b|2-4|b|2, 其中正确的是()。A ①②B ②③C ③④D ②④” 相关考题
考题
设A为m*n矩阵,则有()。
A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
考题
下述结论中,不正确的有()
A.若向量a与β正交,则对任意实数a,b,aα与bβ也正交B.若向量β与向量a1,a2都正交,则β与a1,a2的任一线性组合也正交C.若向量a与正交,则a,β中至少有一个是零向量D.若向量a与任意同维向量正交,则a是零向量.
考题
设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:
A. A的行向量组线性相关
B. A的列向量组线性相关
C. B的行向量组线性相关
D. r(A)+r(B)≤n
考题
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。
A、矩阵A的任意两个列向量线性相关
B、矩阵A的任意两个列向量线性无关
C、矩阵A的任一列向量是其余列向量的线性组合
D、矩阵A必有一个列向量是其余列向量的线性组合
考题
设A是mxn的非零矩阵,B是nxl非零矩阵,满足AB=0,以下选项中不一定成立的是:
A. A的行向量组线性相关 B. A的列向量组线性相关
C.B的行向量组线性相关 D.r(A)+r(B)≤n
考题
设a,b,c是任意的非零平面向量,且相互不共线,有以下结论 ①(a·b)·c-(c·a)·b=0; ②|a|-|b||a-b|; ③(b·c)·a-(c·a)·b不与c垂直; ④(3a+2b)(3a-2b)=9|a|2-4|b|2, 其中正确的是()。A、①②B、②③C、③④D、②④
考题
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A
矩阵A的任意两个列向量线性相关B
矩阵A的任意两个列向量线性无关C
矩阵A的任一列向量是其余列向量的线性组合D
矩阵A必有一个列向量是其余列向量的线性组合
考题
单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A
A的行向量组线性相关B
A的列向量组线性相关C
B的行向量组线性相关D
r(A)+r(B)≤n
考题
单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A
若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B
若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解
考题
单选题设a(→),b(→)为非零向量,且a(→)⊥b(→),则必有( )。A
|a(→)+b(→)|=|a(→)|+|b(→)|B
|a(→)+b(→)|=|a(→)|-|b(→)|C
|a(→)+b(→)|=|a(→)-b(→)|D
a(→)+b(→)=a(→)-b(→)
考题
单选题设a,b,c是任意的非零平面向量,且相互不共线,有以下结论 ①(a·b)·c-(c·a)·b=0; ②|a|-|b|2-4|b|2, 其中正确的是()。A
①②B
②③C
③④D
②④
考题
单选题设α、β均为非零向量,则下面结论正确的是( )。[2017年真题]A
α×β=0是α与β垂直的充要条件B
α·β=0是α与β平行的充要条件C
α×β=0是α与β平行的充要条件D
若α=λβ(λ是常数),则α·β=0
热门标签
最新试卷