网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。D的面积A和D绕直线x=e旋转一周所得旋转体的体积V分别为(  )。


参考答案

参考解析
解析:先求出切点坐标及切线方程,再用定积分求面积A;旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算。
更多 “过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。D的面积A和D绕直线x=e旋转一周所得旋转体的体积V分别为(  )。 ” 相关考题
考题 设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。

考题 求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.

考题 由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:

考题 过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。D的面积A和D绕直线x=e旋转一周所得旋转体的体积V分别为(  )。

考题 由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体的体积为: A.(293/60)π B.π/60 C. 4π2 D. 5π

考题 求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.

考题 设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如 图1—3—2中阴影部分所示). 图1—3—1 图1—3—2 ①求D的面积S; ②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.

考题 已知函数(x)=-x2+2x. ①求曲线y=(x)与x轴所围成的平面图形面积S; ②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.

考题 ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S; ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.

考题 ①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S: ②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.

考题 设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)· ①求平面图形的面积; ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

考题 ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S: ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

考题 求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

考题 ①求在区间(0,π)上的曲线y=sinx与x轴所围成图形的面积S; ②求①中的平面图形绕x轴旋转一周所得旋转体的体积Vx.

考题 设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

考题 过点(0,1)点作曲线的切线,切点为A,又L与x轴交于B点,区域D由与L直线AB及x轴围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.

考题 (1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.

考题 曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。

考题 曲线y=e-x (x≥0)与直线x=0,y=0所围图形绕ox轴旋转一周所得旋转体的体积为( )。 A. π/2 B. π C. π/3 D. π/4

考题 求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?

考题 设曲线及x=0所围成的平面图形为D. (1)求平面图形D的面积s. (2)求平面图形D绕y轴旋转一周生成的旋转体体积V

考题 设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.

考题 设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

考题 (1)求曲线y=f(x); (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.

考题 (1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示) 的面积A. (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.

考题 曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()A、π2/4B、π/2C、π2/4+1D、π/2+1

考题 由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()A、(293/60)πB、π/60C、4π2D、5π

考题 单选题由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()A (293/60)πB π/60C 4π2D 5π