网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
求曲线y=
,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.

参考答案
参考解析
解析:

更多 “求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.” 相关考题
考题
曲线y=sinx(0≤x≤2/π)与直线x=2/π,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:
A.π2/4 B.π2/2 C.π2/4 +1 D.π2/2+1
考题
设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如
图1—3—2中阴影部分所示).
图1—3—1
图1—3—2
①求D的面积S;
②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.
考题
(1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.
考题
单选题曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()A
π2/4B
π/2C
π2/4+1D
π/2+1
热门标签
最新试卷