网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于


参考答案

参考解析
解析:这是一道常见的基础题,由Aα=λα,α≠0知A^nα=λ^nα,那么对于A^2+A=0(λ^2+λ)α=0λ^2+λ=0所以A的特征值只能是0或-1再由A是实对称必有A~A,而A即是A的特征值,那么由r(A)=3,可知(D)正确
更多 “设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于” 相关考题
考题 设A为非奇异对称矩阵,则____仍为对称矩阵。 A.A的转置B.A的逆矩阵C.3AD.A与A的转置的乘积

考题 设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)=() A、2B、3C、4D、5

考题 设6阶方阵A的秩为3,则其伴随矩阵的秩也是3。() 此题为判断题(对,错)。

考题 若A是实对称矩阵,则若|A|>O,则A为正定的

考题 设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵 B.设A,B可逆,则A^-1+B^-1为对称矩阵 C.A+B为对称矩阵 D.kA为对称矩阵

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n) B.A的所有特征值非负 C. D.秩(A)=n

考题 设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ). A.①③ B.②④ C.②③ D.③④

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A是实对称矩阵,C是实可逆矩阵,.则( ). A.A与B相似 B.A与B不等价 C.A与B有相同的特征值 D.A与B合同

考题 设A为四阶非零矩阵,且r(A^*)=1,则().A.r(A)=1 B.r(A)=2 C.r(A)=3 D.r(A)=4

考题 若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

考题 设矩阵,已知矩阵A相似于B,则秩(A-2E)与秩(A-E)之和等于A.2 B.3 C.4 D.5

考题 设矩阵,则A^3的秩为________

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:   (Ⅰ)秩r(A)≤2;   (Ⅱ)若α,β线性相关,则秩r(A)

考题 设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 设3阶矩阵,已知A的伴随矩阵的秩为1,则a=()。A、-2B、-1C、1D、2

考题 填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

考题 单选题设3阶矩阵,已知A的伴随矩阵的秩为1,则a=()。A -2B -1C 1D 2