网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
求一个非零向量a3,使得a3与向量都正交。


参考答案

参考解析
解析:
更多 “求一个非零向量a3,使得a3与向量都正交。” 相关考题
考题 若向量a,b线性相关,则____。 A.a=kb或b=lAB.其中必有一个零向量C.两者必同时是零向量

考题 设向量α=(1,2,-2),β=(2,a,3),且α与β正交,则a=_________.

考题 下述结论中,不正确的有() A.若向量a与β正交,则对任意实数a,b,aα与bβ也正交B.若向量β与向量a1,a2都正交,则β与a1,a2的任一线性组合也正交C.若向量a与正交,则a,β中至少有一个是零向量D.若向量a与任意同维向量正交,则a是零向量.

考题 A.不存在 B.仅含一个非零解向量 C.含有二个线性无关解向量 D.含有三个线性无关解向量

考题 设a,b,c为非零向量,则与a不垂直的向量是( )。A.(a·c)b-(a·b)c B. C.a×b D.a+(a×b)×a

考题 设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )A.必要非充分条件 B.充分非必要条件 C.充分必要条件 D.既非充分也非必要条件

考题 A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量 D.含有三个线性无关的解向量

考题 证明的充分必要条件是存在非零列向量a及非零行向量使.

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 求一个与,,都正交的单位向量

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 求向量组a1=(1,1,1,k),a2=(1,1,k,1),a3=(1,2,1,1)的秩和一个极大无关组

考题 设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.

考题 试证,若n维向量a与正交,则对于任意实数k,l,有ka与l正交

考题 利用施密特正交化方法把向量组a1=(1,0,-1,1), a2=(1,-1,0,1), a3=(-1,1,1,0)正交化

考题 求向量组的一个极大无关组,并把其余向量用极大无关组线性表示。

考题 利用施密特正交化方法把向量组a1=(0,1,1)′,a2=(1,1,0)′,a3=(1,0,1)′正交化

考题 设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

考题 设二维非零向量α不是二阶方阵A的特征向量.   (1)证明α,Aα线性无关;   (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;

考题 设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

考题 已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是: A.a2,a4 B.a3,a4 C.a1,a2 D.a2,a3

考题 已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。 A、al a2 B、a1 a3 C、al a2 a3 D、a2 a3 a4

考题 A.向量组(Ⅰ)与(Ⅱ)都线性相关 B.向量组(Ⅰ)线性相关 C.向量组(Ⅱ)线性相关 D.向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示

考题 问答题设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明:  (1)Ai(i=1,2,3)的特征值有且仅有0和1;  (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j);  (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。