网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
填空题
已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

参考答案

参考解析
解析:
由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。
更多 “填空题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。” 相关考题
考题 设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A、η1+η2是Ax=0的一个解B、(1/2)η1+(1/2)η2是Ax=b的一个解C、η1-η2是Ax=0的一个解D、2η1-η2是Ax=b的一个解

考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。 A.2B.5C.3D.1

考题 设η为非零向量,A=,η为方程组AX=O的解,则a=_______,方程组的通解为_______.

考题 设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.

考题 设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.   (Ⅰ)证明r(A)=2;   (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.

考题 设,.   已知线性方程组Ax=b存在2个不同的解.   (Ⅰ)求λ,a;   (Ⅱ)求方程组Ax=b的通解.

考题 设为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}

考题 设β1,β2是线性方程组Ax=b的两个不同的解,a1、a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:

考题 设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是:

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系 B.k1ξ1+k1ξ2是Ax=0的通解 C.k1ξ1+ξ2是Ax=0的通解 D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

考题 设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:   (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)   (2)若r(A)≥r(B),则AX=0的解都是BX=0的解   (3)若AX=0与BX=0同解,则r(A)-r(B)   (4)若r(A)=r(B),则AX=0与BX=0同解   以上命题正确的是().A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)

考题 已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。 A、al a2 B、a1 a3 C、al a2 a3 D、a2 a3 a4

考题 已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).A.x=k1(η-η2)+η3 B.x=k1η1+k2η2+η3 C.x=k1η1+k2η2+k3η3 D.x=k1(η+η2)+η3

考题 单选题设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。A 3B 2C 1D 0

考题 单选题设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组AX=0的基础解系为k(1,0,2,0)T,则方程组A*X=0的基础解系为(  ).A α1,α2,α3B α1+α2,α2+α3,3α3C α2,α3,α4D α1+α2,α2+α3,α3+α4,α4+α1

考题 单选题设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。A α(→)1+α(→)2,α(→)2+α(→)3,α(→)1+α(→)3B α(→)1-α(→)2,α(→)2-α(→)3,α(→)3-α(→)1C α(→)1+α(→)2+α(→)3,α(→)3-α(→)2,α(→)1+2α(→)3D α(→)1-α(→)2,2α(→)2-3α(→)3,3α(→)3-2α(→)1

考题 单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,-1,-1)T+(1,1,0,2)TB k(0,1,-1,-1)T+(1,1,0,2)T/2C k(1,1,0,2)T+(0,1,-1,-1)TD k(1,1,0,2)T+(0,1,-1,-1)T/2

考题 单选题已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。A k1α(→)1+k2(α(→)1+α(→)2)+(β(→)1-β(→)2)/2B k1α(→)1+k2(α(→)1-α(→)2)+(β(→)1+β(→)2)/2C k1α(→)1+k2(β(→)1+β(→)2)+(β(→)1-β(→)2)/2D k1α(→)1+k2(β(→)1-β(→)2)+(β(→)1+β(→)2)/2

考题 单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]A x=k1(α1-α2)+k2(α1+α3)+α1B x=k1(α1-α3)+k2(α2+α3)+α1C x=k1(α2-α1)+k2(α2-α3)+α1D x=k1(α2-α3)+k2(α1+α2)+α1

考题 单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,1,1)T+(1,1,0,2)T/2B k(0,1,-1,-1)T+(1,1,0,2)T/2C k(0,1,1,-1)T+(1,1,0,2)T/2D k(0,1,-1,1)T+(1,1,0,2)T/2

考题 单选题已知A为3×4矩阵,X(→)=(x1,x2,x3,x4)T,AX(→)=0(→)有通解k(1,l,0,-1)T,其中k为任意常数,将A中去掉第i列(i=1,2,3,4)的矩阵记为Ai,则下列方程组中有非零解的是(  )。A A1Y(→)=0(→)B A2Y(→)=0(→)C A3Y(→)=0(→)D A4Y(→)=0(→)

考题 填空题已知某二阶非齐次线性微分方程的三个解分别为y1=ex,y2=xex,y3=x2ex,则它的通解为____。

考题 问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。