网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。
A

k(0,1,1,1)T+(1,1,0,2)T/2

B

k(0,1,-1,-1)T+(1,1,0,2)T/2

C

k(0,1,1,-1)T+(1,1,0,2)T/2

D

k(0,1,-1,1)T+(1,1,0,2)T/2


参考答案

参考解析
解析:
由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。
更多 “单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,1,1)T+(1,1,0,2)T/2B k(0,1,-1,-1)T+(1,1,0,2)T/2C k(0,1,1,-1)T+(1,1,0,2)T/2D k(0,1,-1,1)T+(1,1,0,2)T/2” 相关考题
考题 若四阶方阵的秩为3,则( )A.A为可逆阵 B.齐次方程组Ax=0有非零解C.齐次方程组Ax=0只有零解 D.非齐次方程组Ax=b必有解

考题 设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A、η1+η2是Ax=0的一个解B、(1/2)η1+(1/2)η2是Ax=b的一个解C、η1-η2是Ax=0的一个解D、2η1-η2是Ax=b的一个解

考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

考题 对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。 A.2B.5C.3D.1

考题 设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:   (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)   (2)若r(A)≥r(B),则AX=0的解都是BX=0的解   (3)若AX=0与BX=0同解,则r(A)-r(B)   (4)若r(A)=r(B),则AX=0与BX=0同解   以上命题正确的是().A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

考题 非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解. B.r=n时,方程组Ax=b有唯一解. C.m=n时,方程组Ax=b有唯一解. D.r

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).A.x=k1(η-η2)+η3 B.x=k1η1+k2η2+η3 C.x=k1η1+k2η2+k3η3 D.x=k1(η+η2)+η3

考题 设为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。

考题 设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

考题 设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.   (Ⅰ)证明r(A)=2;   (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.

考题 已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

考题 已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。 A、al a2 B、a1 a3 C、al a2 a3 D、a2 a3 a4

考题 非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解 B.r=n时,方程组AX=b有唯一解 C.m=m时,方程组AX=b有唯一解 D.r<n时,方程组AX=b有无穷多解

考题 问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。

考题 填空题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

考题 单选题设α(→)1,α(→)2,α(→)3,α(→)4是4维非零列向量组,A=(α(→)1,α(→)2,α(→)3,α(→)4),A*是A的伴随矩阵,已知方程组AX(→)=0(→)的基础解系为k(1,0,2,0)T,则方程组A*X(→)=0(→)的基础解系为(  )。A α(→)1,α(→)2,α(→)3B α(→)1+α(→)2,α(→)2+α(→)3,3α(→)3C α(→)2,α(→)3,α(→)4D α(→)1+α(→)2,α(→)2+α(→)3,α(→)3+α(→)4,α(→)4+α(→)1

考题 问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

考题 单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,1,1)T+(1,1,0,2)T/2B k(0,1,-1,-1)T+(1,1,0,2)T/2C k(0,1,1,-1)T+(1,1,0,2)T/2D k(0,1,-1,1)T+(1,1,0,2)T/2

考题 单选题设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。A 3B 2C 1D 0

考题 单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]A x=k1(α1-α2)+k2(α1+α3)+α1B x=k1(α1-α3)+k2(α2+α3)+α1C x=k1(α2-α1)+k2(α2-α3)+α1D x=k1(α2-α3)+k2(α1+α2)+α1

考题 单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,-1,-1)T+(1,1,0,2)TB k(0,1,-1,-1)T+(1,1,0,2)T/2C k(1,1,0,2)T+(0,1,-1,-1)TD k(1,1,0,2)T+(0,1,-1,-1)T/2

考题 单选题设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。A α(→)1+α(→)2,α(→)2+α(→)3,α(→)1+α(→)3B α(→)1-α(→)2,α(→)2-α(→)3,α(→)3-α(→)1C α(→)1+α(→)2+α(→)3,α(→)3-α(→)2,α(→)1+2α(→)3D α(→)1-α(→)2,2α(→)2-3α(→)3,3α(→)3-2α(→)1