网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


参考答案

参考解析
解析:
更多 “设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA” 相关考题
考题 n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

考题 设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B) B.|A|=|B| C.A~B D.A,B与同一个实对称矩阵合同

考题 设A和B均为n阶矩阵,则必有( )。 A.|A+B|=|A|+|B| B.AB=BA C.|AB|=|BA| D.

考题 N阶实对称矩阵A正定的充分必要条件是(). A.A无负特征值 B.A是满秩矩阵 C.A的每个特征值都是单值 D.A^-1是正定矩阵

考题 设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵 B.设A,B可逆,则A^-1+B^-1为对称矩阵 C.A+B为对称矩阵 D.kA为对称矩阵

考题 设A是一个n阶矩阵,那么是对称矩阵的是( ).

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 设A,B皆为n阶矩阵,则下列结论正确的是().A.AB=O的充分必要条件是A=O或B-O B.AB≠O的充分必要条件是A≠0且B≠0 C.AB=O且r(A)=N,则B=O D.若AB≠0,则|A|≠0或|B|≠0

考题 设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

考题 设A与B都是n阶方阵,且,证明AB与BA相似.

考题 设A,B为n阶矩阵.   (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

考题 设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。

考题 设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

考题 设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.

考题 证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

考题 设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.

考题 设A、B都是n阶方阵,满足AB=A-B,请证明:AB=BA

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设A和B都是n阶矩阵.记,. (1)求HG和GH. (2)证明|E-AB|=|E-BA|.

考题 设A与B都是n阶正交矩阵,证明AB也是正交矩阵.

考题 问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。