网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充要条件是()
A.A的行向量组线性无关
B.A的行向量组线性相关
C.A的列向量组线性无关
D.A的列向量组线性相关
参考答案和解析
Dr(A)=n-3,故基础解系中解向量个数为3,且线性无关. 选项(D)中,由(v 3 -v 2 -v 1 )+(v 3 +v 2 -v 1 )+(-2v 3 )=0 知v 3 -v 2 -v 1 ,v 3 +v 2 -v 1 ,-2v 3 线性相关.选项(A)、(B)、(C)中的向量组线性无关,且为三个解向量,故为基础解系. 故应选D.
更多 “设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充要条件是()A.A的行向量组线性无关B.A的行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关” 相关考题
考题
设A为m*n矩阵,则有()。
A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
考题
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()
A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
考题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解
考题
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.
考题
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④
考题
单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A
若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B
若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解
考题
单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则( ).A
A*X=0的解均是AX=0的解B
AX=0的解均是A*X=O的解C
AX=0与A*X=0无非零公共解D
AX=0与A*X=O仅有2个非零公共解
考题
单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为( )。A
A为方阵且|A|≠0B
导出组AX(→)=0(→)仅有零解C
秩(A)=nD
系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关
考题
单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A
①②B
①③C
②④D
③④
考题
单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则( )。A
A*X(→)=0(→)的解均是AX(→)=0(→)的解B
AX(→)=0(→)的解均是A*X(→)=0(→)的解C
AX(→)=0(→)与A*X(→)=0(→)无非零公共解D
AX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解
热门标签
最新试卷