网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设矩阵A为10×14矩阵的矩阵,且A的秩为8,则Ax=0的解向量组的秩为()

A.3

B.4

C.5

D.6

E.7


参考答案和解析
正确
更多 “设矩阵A为10×14矩阵的矩阵,且A的秩为8,则Ax=0的解向量组的秩为()A.3B.4C.5D.6E.7” 相关考题
考题 对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。 A.2B.5C.3D.1

考题 设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:

考题 设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是(). A.r(A)=m B.r(A)=N C.A为可逆矩阵 D.r(A)=b且b可由A的列向量组线性表示

考题 设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是A.① ② B.① ③ C.② ④ D.③ ④

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解 A.① ② B.① ③ C.② ④ D.③ ④

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=n B.r<n C.r≥n D.r>n

考题 设矩阵,则A^3的秩为________

考题 设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩

考题 设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:   (Ⅰ)秩r(A)≤2;   (Ⅱ)若α,β线性相关,则秩r(A)

考题 设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于

考题 设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

考题 设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r

考题 填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<r1C r=r1D r与r1的关系依C而定

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<rlC r=rlD r与r1的关系依C而定

考题 单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。A A为方阵且|A|≠0B 导出组AX(→)=0(→)仅有零解C 秩(A)=nD 系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关

考题 填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。

考题 问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。